4.8 Article

From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 28, 期 5, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201704638

关键词

bifunctional electrocatalysts; DFT computation; nanorod array; ZIF nanocrystals; Zn-air batteries

资金

  1. National Key Research and Development Program of China [2016YFA0202603]
  2. National Natural Science Foundation of China [51372186, 51672204]

向作者/读者索取更多资源

Designing a highly active electrocatalyst with optimal stability at low cost is must and non-negotiable if large-scale implementations of fuel cells are to be fully realized. Zeolitic-imidazolate frameworks (ZIFs) offer rich platforms to design multifunctional materials due to their flexibility and ultrahigh surface area. Herein, an advanced Co-N-x/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized. Remarkably, as a bifunctional catalyst (E-j = 10 (OER) - E-1/2 (ORR) approximate to 0.65 V), it further displays high performance of Zn-air batteries with high cycling stability even at a high current density. Such supercatalytic properties are largely attributed to the synergistic effect of the chemical composition, high surface area, and abundant active sites of the nanorods. The activity origin is clarified through post oxygen reduction X-ray photoelectron spectroscopy analysis and density functional theory studies. Undoubtedly, this approach opens a new avenue to strategically design highly active and performance-oriented electrocatalytic materials for wider electrochemical energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据