4.6 Article

Damping of Landau levels in neutral graphene at low magnetic fields: A phonon Raman scattering study

期刊

PHYSICAL REVIEW B
卷 97, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.97.035419

关键词

-

资金

  1. CAPES
  2. FAPESP
  3. FAPEMIG
  4. CNPq
  5. Nanocarbon INCT
  6. Nanofabrication Network, Brazil

向作者/读者索取更多资源

Landau level broadening mechanisms in electrically neutral and quasineutral graphene were investigated through micro-magneto-Raman experiments in three different samples, namely, a natural single-layer graphene flake and a back-gated single-layer device, both deposited over Si/SiO2 substrates, and a multilayer epitaxial graphene employed as a reference sample. Interband Landau level transition widths were estimated through a quantitative analysis of the magnetophonon resonances associated with optically active Landau level transitions crossing the energy of the E-2g Raman-active phonon. Contrary to multilayer graphene, the single-layer graphene samples show a strong damping of the low-field resonances, consistent with an additional broadening contribution of the Landau level energies arising from a random strain field. This extra contribution is properly quantified in terms of a pseudomagnetic field distribution Delta B = 1.0 - 1.7 T in our single-layer samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据