4.2 Article

Mec1ATR is needed for extensive telomere elongation in response to ethanol in yeast

期刊

CURRENT GENETICS
卷 64, 期 1, 页码 223-234

出版社

SPRINGER
DOI: 10.1007/s00294-017-0728-1

关键词

Telomeres; Yeast; Stress; Ethanol; Rif1; Rif2

资金

  1. Israel Science Foundation
  2. Israel Cancer Association
  3. Israel Cancer Research Foundation

向作者/读者索取更多资源

Telomere length homeostasis is essential for cell survival. In humans, telomeres shorten as a function of age. Short telomeres are known determinants of cell senescence and longevity. The yeast Saccharomyces cerevisiae expresses telomerase and maintains a strict telomere length homeostasis during vegetative growth. We have previously reported that different environmental signals promote changes in telomere length in S. cerevisiae. In particular, exposure to ethanol induces an extensive telomere elongation response due to a reduction in RAP1 mRNA and protein levels. Here we show that the reduction in Rap1 protein levels disrupts the physical interaction between Rap1 and Rif1, which in turn reduces the recruitment of these two proteins to telomeres during G2-phase. Although elongation of the shortest telomeres has been shown to depend on the Rif2 telomeric protein and on the Tel1(ATM) protein kinase, we show here that the extensive telomere elongation in response to ethanol exposure is Rif1 and Mec1 (ATR)-dependent. Our results fit a model in which Rif1 and Rap1 form a complex that is loaded onto telomeres at the end of S-phase. Reduced levels of the Rap1-Rif1 complex in ethanol lead to continuous telomere elongation in a Mec1-dependent process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据