4.6 Article

Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling

期刊

PHYSICAL REVIEW A
卷 97, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.97.013855

关键词

-

资金

  1. DFG [MA 6334/3-1]
  2. Grenoble Nanosciences Foundation
  3. European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [278203]
  4. Swedish Research Council
  5. Knut and Alice Wallenberg Foundation
  6. European Research Council (ERC) [278203] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The interaction between propagating microwave fields and Cooper-pair tunneling across a DC-voltage-biased Josephson junction can be highly nonlinear. We show theoretically that this nonlinearity can be used to convert an incoming single microwave photon into an outgoing n-photon Fock state in a different mode. In this process, the electrostatic energy released in a Cooper-pair tunneling event is transferred to the outgoing Fock state, providing energy gain. The created multiphoton Fock state is frequency entangled and highly bunched. The conversion can be made reflectionless (impedance matched) so that all incoming photons are converted to n-photon states. With realistic parameters, multiplication ratios n > 2 can be reached. By two consecutive multiplications, the outgoing Fock-state number can get sufficiently large to accurately discriminate it from vacuum with linear postamplification and power measurement. Therefore, this amplification scheme can be used as a single-photon detector without dead time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据