4.8 Article

Association of Arsenic and Phosphorus with Iron Nanoparticles between Streams and Aquifers: Implications for Arsenic Mobility

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 49, 期 24, 页码 14101-14109

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.5b03506

关键词

-

资金

  1. National Centre for Groundwater Research and Training
  2. Australian Government initiative - Australian Research Council
  3. National Water Commission

向作者/读者索取更多资源

The microbial oxidation of organic matter coupled to reductive iron oxide dissolution is widely recognized as the dominant mechanism driving elevated arsenic (As) concentrations in aquifers. This paper considers the potential of nanoparticles to increase the mobility of As in aquifers, thereby accounting for discrepancies between predicted and observed As transport reported elsewhere. Arsenic, phosphorus, and iron size distributions and natural organic matter association were examined along a flow path from surface water via the hyporheic zone to shallow groundwater. Our analysis demonstrates that the colloidal Fe concentration (>1 kDa) correlates with both colloidal P and colloidal As concentrations. Importantly, increases in the concentration of colloidal P (>1 kDa) were positively correlated with increases in the concentration of nominally dissolved As (<1 kDa), but no correlation was observed between colloidal As and nominally dissolved P. This suggests that P actively competes for adsorption sites on Fe nanoparticles, displacing adsorbed As, thus mirroring their interaction with Fe oxides in the aquifer matrix. Dynamic redox fronts at the interface between streams and aquifers may therefore provide globally widespread conditions for the generation of Fe nanoparticles, a mobile phase for As adsorption currently not a part of reactive transport models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据