4.3 Article

Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies

期刊

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
卷 28, 期 5, 页码 390-414

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1062936X.2017.1326401

关键词

Plasmodium falciparum calcium-dependent protein kinase-1(PfCDPK-1); 3D-pharmacophore; homology modelling; docking; antimalarial; screening

资金

  1. Indian Council of Medical Research, New Delhi
  2. UGC, New Delhi under the UPE-II scheme

向作者/读者索取更多资源

Current research on antimalarial protein kinases has provided an opportunity to design kinase-based antimalarial drugs. We have developed a common feature-based pharmacophore model from a set of multiple chemical scaffolds including derivatives of 3,6-imidazopyridazines, pyrazolo[2,3-d]pyrimidines and imidazo[1,5-a]pyrazines, in order to incorporate the maximum structural diversity information in the model for the Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) target. The best pharmacophore model (Hypo-1) with the essential features of two hydrogen bond donors (HBD), one hydrophobic aromatic (HYAr) and one ring aromatic (RA) showed the classification accuracies of 86.27%, 78.43% and 100.00% in labelling the training and test set (test set-1 and test set-2) compounds into more active and less active classes. In order to identify the crucial interaction between multiple scaffold ligands and the target protein, we first developed the homology model using a template structure of P. bergheii (PbCDPK1; PDB ID: 3Q5I), and thereafter performed the docking studies. The residues such as Lys85, Phe147, Tyr148, Leu198, Val211, and Asp212 were found to be the most important interacting residues for possessing PfCDPK-1 inhibitory activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据