4.7 Article

A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems

期刊

SAFETY SCIENCE
卷 91, 期 -, 页码 49-60

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ssci.2016.07.016

关键词

FRAM; Safety-II; Safety assessment; Resilience engineering; Monte Carlo

向作者/读者索取更多资源

Modern trends of socio-technical systems analysis suggest the development of an integrated view on technological, human and organizational system components. The Air Traffic Management (ATM) system can be taken as an example of one of the most critical socio-technical system, deserving particular attention in managing operational risks and safety. In the ATM system environment, the traditional techniques of risk and safety assessment may become ineffective as they miss in identifying the interactions and couplings between the various functional aspects of the system itself: going over the technical analysis, it is necessary to consider the influences between human factors and organizational structure both in everyday work and in abnormal situations. One of the newly introduced methods for understanding these relations is the Functional Resonance Analysis Method (FRAM) which aims to define the couplings among functions in a dynamic way. This paper evolves the traditional FRAM, proposing an innovative semi quantitative framework based on Monte Carlo simulation. Highlighting critical functions and critical links between functions, this contribution aims to facilitate the safety analysis, taking account of the system response to different operating conditions and different risk state. The paper presents a walk-through section with a general application to an ATM process. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据