4.6 Article

Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

期刊

FRONTIERS IN MEDICINE
卷 5, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmed.2018.00019

关键词

neutrophil extracellular trap formation; pH; spontaneous NETosis; NADPH-dependent NETosis; lipopolysaccharide-induced NETosis; Gram-negative bacteria-induced NETosis; Gram-positive bacteria-induced NETosis; correcting pH

资金

  1. Canadian Institutes of Health Research [MOP-111012]
  2. Cystic Fibrosis Canada [3180, 3029]
  3. Natural Sciences and Engineering Research Council of Canada [RGPIN436250-13]
  4. Mitacs Elevate Postdoctoral Fellowship

向作者/读者索取更多资源

Neutrophils migrating from the blood (pH 7.35-7.45) into the surrounding tissues encounter changes in extracellular pH (pH(e)) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pH(i)). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pH(e) (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10-20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonasaeruginosa (Gramnegative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pH(e) promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H(+) ions, whereas each bicarbonate HCO3(-) ion binds 1H(+) ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar bicarbonate solution. For that reason, regulating NETosis by pH with specific buffers such as THAM could be more effective than bicarbonate in managing NET-related diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据