4.5 Article

Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator

期刊

ELECTROPHORESIS
卷 39, 期 3, 页码 504-511

出版社

WILEY
DOI: 10.1002/elps.201700247

关键词

Autonomous pumping; Droplet; Emulsion; Microfluidic device; Polydimethylsiloxane

资金

  1. JSPS KAKENHI [JP16H04171]
  2. Grants-in-Aid for Scientific Research [16H04171] Funding Source: KAKEN

向作者/读者索取更多资源

We previously developed a technique that enabled automatic creation of monodisperse water-in-oil droplets with the use of an air-evacuated PDMS microfluidic device. Although the device generated droplets over a long-time period, the production rate was slow (approximate to 10 droplets per second). In the current study, we aimed to improve this rate, using the same fluid pumping principle described in our previous work, by remodeling our device configuration. To achieve this aim, we developed a new device with a much larger PDMS surface area-to-volume ratio within the air-trapping void space (178cm(-1)), than that of our earlier device (5.0cm(-1)). This design approach was based on the idea that a larger PDMS surface area-to-volume ratio was likely to create a higher vacuum inside the void space, thereby contributing to faster liquid flow and an increased droplet generation rate. The new device consisting of five layers featuring a degassed PDMS slab as a detachable liquid-suction actuator, which was stacked on a lower microfluidic layer. In this device, the rate of droplet production increased during the time-course droplet formation and reached ca. 470 droplets per second immediately before completely consuming the loaded aqueous solution (20L).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据