4.8 Article

Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 49, 期 20, 页码 12197-12205

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.5b02851

关键词

-

资金

  1. Swedish Research Council [VR 2012-2976]
  2. Kempe Foundation

向作者/读者索取更多资源

Adsorption of antibiotics at mineral surfaces has been extensively studied over the past 20 years, yet much remains to be learned on their interfacial properties and transformation mechanisms. In this study, interactions of Ciprofloxacin (CIP), a fluoroquinolone antibiotic with two sets of synthetic nanosized hematite particles, with relatively smooth (H10, 10-20 nm in diameter) and roughened (H80, 80-90 nm in diameter) surfaces, were studied by means of liquid chromatography (LC), mass spectrometry (MS), and spectroscopy (vibration and X-ray photoelectron). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy provides evidence for inner-sphere bidentate complex formation of CIP at hematite surfaces in 0.01 M NaCl, irrespective of pH and particle size. ATR-FTIR spectroscopy also revealed that the sorbed mother CIP molecule decayed to other surface species over a period of at least 65 h. This was supported by the detection of three daughter products in the aqueous phase by LC/MS. The appearance of NH3+ groups during the course of these experiments, revealed by cryogenic XPS, provides further evidence that CIP oxidation proceeds through an opening of piperazine ring via N-dealkylation. Additional in vacuo FTIR experiments under temperature-programmed desorption also showed that oxidation of sorbed byproducts were effectively degraded beyond 450 degrees C, a result denoting considerably strong (inter)molecular bonds of both mother and daughter products. This work also showed that rougher, possibly multidomainic particles (H80) generated slower rates of CIP decomposition but occurring through more complex schemes than at smoother particle surfaces (H10). This work thus uncovered key aspects of the binding of an important antibiotic at iron oxide surfaces, and therefore provided additional constraints to our growing understanding of the fate of emerging contaminants in the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据