4.5 Article

Integrated online trajectory planning and optimization in distinctive topologies

期刊

ROBOTICS AND AUTONOMOUS SYSTEMS
卷 88, 期 -, 页码 142-153

出版社

ELSEVIER
DOI: 10.1016/j.robot.2016.11.007

关键词

Online trajectory optimization; Mobile robot motion planning; Distinctive topologies; Homology classes; Timed-Elastic-Band; Model predictive control

向作者/读者索取更多资源

This paper presents a novel integrated approach for efficient optimization based online trajectory planning of topologically distinctive mobile robot trajectories. Online trajectory optimization deforms an initial coarse path generated by a global planner by minimizing objectives such as path length, transition time or control effort. Kinodynamic motion properties of mobile robots and clearance from obstacles impose additional equality and inequality constraints on the trajectory optimization. Local planners account for efficiency by restricting the search space to locally optimal solutions only. However, the objective function is usually non-convex as the presence of obstacles generates multiple distinctive local optima. The proposed method maintains and simultaneously optimizes a subset of admissible candidate trajectories of distinctive topologies and thus seeking the overall best candidate among the set of alternative local solutions. Time-optimal trajectories for differential-drive and carlike robots are obtained efficiently by adopting the Timed-Elastic-Band approach for the underlying trajectory optimization problem. The investigation of various example scenarios and a comparative analysis with conventional local planners confirm the advantages of integrated exploration, maintenance and optimization of topologically distinctive trajectories. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据