4.5 Article

Applying probability navigation function in dynamic uncertain environments

期刊

ROBOTICS AND AUTONOMOUS SYSTEMS
卷 87, 期 -, 页码 237-246

出版社

ELSEVIER
DOI: 10.1016/j.robot.2016.10.010

关键词

Navigation-function; Collision probability; Obstacle avoidance

向作者/读者索取更多资源

This paper introduces a novel motion planning algorithm for stochastic dynamic scenarios. We apply a Probability Navigation Function (PNF), discussed in the authors' previous research work, to dynamic environments. We first consider the ambient configuration space to be an n- dimensional ball; the robot and the obstacles loci are all known with a Gaussian probability distribution, and both the robot and the obstacles are assumed to have n-dimensional disc shapes. We fuse the geometries of the robot and the obstacles with the localization probability distribution using convolution. We then define a Probability Navigation Function (PNF) phi from the configuration space to R. We also provide a numerical method for the case where the obstacles and the robot shapes are non-symmetric and their probability distributions are non-Gaussian respectively. The PNF is applied to the dynamic case, where the obstacles are moving at different velocities, by calculating consecutive probability navigation functions according to a prediction of the obstacles' positions and their estimation error covariance. We then apply a simulated annealing scheme on the sequence of motion directions to choose an optimal path. We demonstrate our algorithm for various scenarios. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据