4.5 Article

Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie-Raman lidar observations

期刊

ATMOSPHERIC MEASUREMENT TECHNIQUES
卷 11, 期 2, 页码 949-969

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-11-949-2018

关键词

-

资金

  1. French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) [ANR-11-LABX-0005-01]
  2. Regional Council Nord-Pas de Calais
  3. European Funds for Regional Economic Development (FEDER)
  4. Russian Science Foundation [16-17-10241]

向作者/读者索取更多资源

Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000m while the elevated smoke layer occurred in the 2500-4000m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km(-1) with SD of 0.042 km(-1). The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15% observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 +/- 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements 55 +/- 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据