4.7 Article

Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnrasl/slx174

关键词

accretion, accretion discs; black hole physics; MHD; methods: numerical; galaxies: jets

资金

  1. NSF PRAC [1615281]
  2. Netherlands Organisation for Scientific Research (NWO) Spinoza Prize
  3. Amsterdam Science Talent Scholarship
  4. NWO VENI [639.041.437]
  5. TAC
  6. NASA Einstein [PF3-140131]
  7. NWO VICI [639.043.513]
  8. [NSF PHY-1125915]
  9. Direct For Computer & Info Scie & Enginr [1615281] Funding Source: National Science Foundation
  10. Office of Advanced Cyberinfrastructure (OAC) [1615281] Funding Source: National Science Foundation

向作者/读者索取更多资源

Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g. angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time-scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well resolved, our isolated discs spread out, causing both the alignment and precession to slow down.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据