4.7 Article

Cosmic equilibration: A holographic no-hair theorem from the generalized second law

期刊

PHYSICAL REVIEW D
卷 97, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.97.046012

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-SC0011632]
  2. Walter Burke Institute for Theoretical Physics at Caltech
  3. Gordon and Betty Moore Foundation [776]

向作者/读者索取更多资源

In a wide class of cosmological models, a positive cosmological constant drives cosmological evolution toward an asymptotically de Sitter phase. Here we connect this behavior to the increase of entropy over time, based on the idea that de Sitter spacetime is a maximum-entropy state. We prove a cosmic no-hair theorem for Robertson-Walker and Bianchi I spacetimes that admit a Q-screen (quantum holographic screen) with certain entropic properties: If generalized entropy, in the sense of the cosmological version of the generalized second law conjectured by Bousso and Engelhardt, increases up to a finite maximum value along the screen, then the spacetime is asymptotically de Sitter in the future. Moreover, the limiting value of generalized entropy coincides with the de Sitter horizon entropy. We do not use the Einstein field equations in our proof, nor do we assume the existence of a positive cosmological constant. As such, asymptotic relaxation to a de Sitter phase can, in a precise sense, be thought of as cosmological equilibration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据