4.8 Article

Simulation and understanding of atomic and molecular quantum crystals

期刊

REVIEWS OF MODERN PHYSICS
卷 89, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/RevModPhys.89.035003

关键词

-

资金

  1. Australian Research Council [FT140100135]
  2. MICINN-Spain [MAT2010-18113, CSD2007-00041, FIS2014-56257-C2-1-P]

向作者/读者索取更多资源

Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He-4 and Ne), molecular solids (H-2 and CH4), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据