4.6 Article

The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

期刊

NATURAL HAZARDS AND EARTH SYSTEM SCIENCES
卷 18, 期 3, 页码 795-805

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/nhess-18-795-2018

关键词

-

资金

  1. Australian Climate Change Science Program
  2. Department of the Environment
  3. Bureau of Meteorology
  4. CSIRO
  5. Australian Government's National Environmental Science Programme

向作者/读者索取更多资源

Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 12 degrees C, primarily due to the 2010/2011 La Nina event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between 4 and 4 degrees C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 degrees C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Nina con-ditions the associated storm surge may have been greatly diminished, with a decrease in storm surge height of over 3m when the SST is reduced by 2 degrees C. In summary, increases in SST lead to an increase in the potential destructiveness of TCs with regard to intensity, precipitation and storm surge, although this relationship is not linear.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据