4.5 Article

Application of Multi-Objective Genetic Algorithm Based Simulation for Cost-Effective Building Energy Efficiency Design and Thermal Comfort Improvement

期刊

FRONTIERS IN ENERGY RESEARCH
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2018.00025

关键词

building design optimization; energy efficiency design standard; life cycle cost; thermal comfort; multi-objective genetic algorithm

资金

  1. Natural Science Foundation of Hubei Province [2017CFB602]
  2. Wuhan Committee of Municipal and Rural Construction [191]
  3. Wuhan University of Technology [40120171, 20410632, 20410646, 35400206]

向作者/读者索取更多资源

Building design following the energy efficiency standards may not achieve the optimal performance in terms of investment cost, energy consumption and thermal comfort. In this paper, an improved multi-objective genetic algorithm (NSGA-II) is combined with building simulation to assist building design optimization for five selected cities located in the hot summer and cold winter region in China. The trade-offs between the annual energy consumption (AEC) and initial construction cost, as well as between life cycle cost (LCC) and number of thermal discomfort hours, were explored. Sensitivity analysis of various design parameters on building energy consumption is performed. The optimizations predicted AEC reduction of 29.08% on average, as compared to a reference building designed following the standard, and 38.6% with 3.18% more cost on the initial investment. New values for a number of building design parameters are recommended for the revision of relevant building energy efficiency standard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据