4.6 Article

IMiD compounds affect CD34+ cell fate and maturation via CRBN-induced IKZF1 degradation

期刊

BLOOD ADVANCES
卷 2, 期 5, 页码 492-504

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/bloodadvances.2017010348

关键词

-

资金

  1. Office of the Director of the National Institutes of Health [S10RR027050, S10OD020056]
  2. National Institutes of Health, National Cancer Institute [R01CA175313]
  3. US Food and Drug Administration [R01FD005110]
  4. National Institutes of Health, National Heart, Lung, and Blood Institute [R01HL93716]

向作者/读者索取更多资源

We have previously shown that immunomodulatory drug (IMiD) compounds induce a shift into immature myeloid precursors with a maturational arrest and subsequent neutropenia. The mechanism of action is unknown. Here we found that IMiD compounds cause selective ubiquitination and degradation of the transcription factor IKZF1 in CD34(+) cells by the Cereblon (CRBN) E3 ubiquitin ligase. Loss of IKZF1 is associated with a decrease of the IKZF1-dependent transcription factor PU.1, critical for the development and maturation of neutrophils. Using a thalidomide analog bead pull-down assay, we showed that IMiD compounds directly bind CRBN in CD34(+) cells. Knockdown of CRBN in CD34(+) cells resulted in resistance to POM-induced IKZF1 downregulation and reversed the POM-induced lineage shift in colony-formation assays, suggesting that the POM-induced degradation of IKZF1 in CD34(+) cells requires CRBN. Chromatin immunoprecipitation assays revealed that IKZF1 binds to the promoter region of PU.1, suggesting that PU.1 is a direct downstream target of IKZF1 in CD34(+) cells. POM failed to induce IKZF1 degradation in IKZF1-Q146H-OE CD34(+) cells, indicating that CRBN binding to IKZF1 and subsequent IKZF1 ubiquitination is critical in this process. Using the NOD/SCID/gamma-c KO mouse model, we confirmed the induction of myeloid progenitor cells by IMiD compounds at the expense of common lymphoid progenitors. These results demonstrate a novel mechanism of action of IMiD compounds in hematopoietic progenitor cells, leading to selective degradation of transcription factors critical for myeloid maturation, and explain the occurrence of neutropenia associated with treatment by IMiD compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据