4.8 Review

Experimental studies of nanofluid thermal conductivity enhancement and applications: A review

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 75, 期 -, 页码 1239-1253

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2016.11.111

关键词

Nanofluids; Conduction; Measurement; Enhancement; Applications

向作者/读者索取更多资源

In many applications, there is a critical need for enhancing the poor thermal conductivity of conventional fluids in order to develop efficient heat transfer fluids. This requirement can be met through dispersing nanometric particles in a given base fluid such as water, ethylene glycol, oil or air. The resulting nanofluids enhanced thermal conductivity of the base fluids. In order to evaluate this enhancement, nanofluid thermal conductivity is required to be measured. Several methods and techniques are covered in the present contribution. In addition, enhancements recorded experimentally are reviewed and summarized. Different parameters affecting on such enhancement are covered, including: nanoparticle concentration, size, shape and thermal conductivity. In addition, base fluid type, nanofluid bulk temperature and dispersion techniques are also covered parameters. However, nanofluids have the potential to contribute in several practical applications including solar thermal, transportation, electronic cooling, medical, detergency and military applications. In the present work, a brief overview of evolution in the use of nanofluids in some applications has been presented. According to this contribution, there is a critical need for further fundamental and applications of nanofluids studies in order to understand the physical mechanisms of using nanofluids as well as explore different aspects of applications of nanofluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据