4.7 Article

Area-wide evapotranspiration monitoring at the crown level of a tropical mountain rain forest

期刊

REMOTE SENSING OF ENVIRONMENT
卷 194, 期 -, 页码 219-229

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2017.03.023

关键词

Individual trees; Forest; Ecosystem function; Indicator; Evapotranspiration; Scintillometry; Climate change; Operational satellite; High-granularity

资金

  1. German Research Foundation (DFG) within the Platform for Biodiversity and Ecosystem Monitoring and Research in South Ecuador [BE 1780/38-1, DFG PAK 823-825]

向作者/读者索取更多资源

Ecosystem water regulation couples energy and water balance, depends on the integrity of the ecosystem, and responds to changes in climate. Changes in tree-water relationships in the biodiversity hotspot of the tropical Andes in southern Ecuador might be potentially observed at the level of individual trees, thus providing an efficient ecosystem monitoring method with applications in forest management and conservation at the tree and landscape levels. In this study, we combine area-average measurements from a laser scintillometer above the forest with optical satellite data at high spatial resolution to obtain area-wide evapotranspiration data. The processing of field data includes the calculation of energy storage in forest biomass and the partitioning of evapotranspiration into transpiration and evaporation. Satellite-based estimates are calibrated by using tower flux measurements and meteorological data within periods of humid and less-humid atmosphere. The annual evapotranspiration was 1316 mm, of which 1086 mm per year corresponds to the forest transpiration at the study site. Average values of 4.7 and 4.1 mm d(-1) per tree crown are observed under humid and less-humid atmospheric conditions, respectively, when applying high-resolution area-wide evapotranspiration in individual crown analysis. Approximately 24% of the observed crowns show a positive monthly change in ET, and 51% of the crowns show a significant change in the daily ET, which can be considered sensitive individuals concerning water relationships. The limitations in the area-wide evapotranspiration at the crown level can be explained by considering the spectral responses of the crown individuals. The presented method can be robustly deployed in the ecological monitoring of mountain forests. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据