4.7 Article

Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process

期刊

RELIABILITY ENGINEERING & SYSTEM SAFETY
卷 184, 期 -, 页码 77-85

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ress.2017.11.017

关键词

Degradation models; Gamma process; Change point; Bayesian; Stochastic expectation-maximization; Remaining useful life

资金

  1. National Natural Science Foundation of China [11471275]
  2. Research Grants Council Theme -Based Research Scheme [T32-101/15-R]
  3. Early Career Research Fund from the Research Grants Council of Hong Kong [28300114]
  4. Simons Foundation [280601]

向作者/读者索取更多资源

Remaining useful life prediction has been one of the important research topics in reliability engineering. For modern products, due to physical and chemical changes that take place with usage and with age, a significant degradation rate change usually exists. Degradation models that do not incorporate a change point may not accurately predict the remaining useful life of products with two-phase degradation. For this reason, we consider the degradation analysis for products with two-phase degradation under gamma processes. Incorporating a probability distribution of the time at which the degradation rate changes into the degradation model, the remaining useful life prediction for a single product can be obtained, even though the rate change has not occurred during the inspection. A Bayesian approach and a likelihood approach via stochastic expectation-maximization algorithm are proposed for the statistical inference of the remaining useful life. A simulation study is carried out to evaluate the performance of the developed methodologies to the remaining useful life prediction. Our results show that the likelihood approach yields relatively less bias and more reliable interval estimates, while the Bayesian approach requires less computational time. Finally, a real dataset on LEDs is presented to demonstrate an application of the proposed methodologies. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据