4.0 Article

The effects of diversified phosphorus nutrition on the growth of oat (Avena sativa L.) and acid phosphatase activity

期刊

出版社

POLSKIE TOWARZYSTWO BOTANICZNE
DOI: 10.5586/asbp.3571

关键词

APase localization; extracellular acid phosphatase; phytate; Pi deficit; root exudates; split root

资金

  1. National Science Center (NCN), Poland [DEC-2012/07/N/NZ9/00972]

向作者/读者索取更多资源

We studied the effect of differential phosphorus (P) supply on the development of oat seedlings (Avena sativa L. 'Arab') as well as localization and activity of acid phosphatases in tissues and root exudates. Plants were grown for 1-3 weeks on nutrient media with inorganic phosphate (+P, control), reduced Pi (0.1 P), phytic acid (PA) as organic P source, and without P addition (-P), in standard conditions or in a split-root culture system. Phosphate starvation reduced shoot growth but increased root elongation and root/shoot ratio, whereas 0.1 P and PA oat plants had similar growth parameters to +P plants. The growth on -P medium significantly decreased Pi content in all tissues, but only a slight Pi decrease was observed in plants grown on 0.1 P and PA media or various split-root system conditions. Pi starvation led to an increase in acid phosphatase (APase) activity in root exudates when compared to +P, 0.1 P, and PA plant samples. APase activity was especially intensive in root cross sections in rhizodermis and around/in vascular tissues of -P plants. For plants grown on 0.1 P medium and on phytic acid, APase activity did not change when compared to the control. Three major isoforms of APases were detected in plant tissues (similar in all studied conditions, with a higher activity of one isoform under Pi deficit). Generally, lowered Pi content (0.1 P) was not stressful to oat plants for up to 3 weeks of culture. Oat plants grew equally well on nutrient media with Pi and on media with phytate, although phytate was considered not available for other plants. The oat plants activated mainly extracellular APases, but also intracellular enzymes, rather via nonlocal signals, to acquire Pi from external/internal sources under Pi deficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据