4.5 Article

Moving beyond the age-depth model paradigm in deep-sea palaeoclimate archives: dual radiocarbon and stable isotope analysis on single foraminifera

期刊

CLIMATE OF THE PAST
卷 14, 期 4, 页码 515-526

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-14-515-2018

关键词

-

资金

  1. Swedish Research Council (Vetenskapsradet) [637-2014-499]
  2. Netherlands Organisation for Scientific Research (NWO) [822.01.0.19]

向作者/读者索取更多资源

Late-glacial palaeoclimate reconstructions from deep-sea sediment archives provide valuable insight into past rapid changes in ocean chemistry. Unfortunately, only a small proportion of the ocean floor with sufficiently high sediment accumulation rate (SAR) is suitable for such reconstructions using the long-standing age-depth model approach. We employ ultra-small radiocarbon (C-14) dating on single microscopic foraminifera to demonstrate that the long-standing age-depth model method conceals large age uncertainties caused by post-depositional sediment mixing, meaning that existing studies may underestimate total geochronological error. We find that the age-depth distribution of our C-14-dated single foraminifera is in good agreement with existing bioturbation models only after one takes the possibility of Zoophycos burrowing into account. To overcome the problems associated with the age-depth paradigm, we use the first ever dual C-14 and stable isotope (delta O-18 and delta C-13) analysis on single microscopic foraminifera to produce a palaeoclimate time series independent of the age-depth paradigm. This new state of the art essentially decouples single foraminifera from the age-depth paradigm to provide multiple floating, temporal snapshots of ocean chemistry, thus allowing for the successful extraction of temporally accurate palaeoclimate data from low-SAR deep-sea archives. This new method can address large geographical gaps in late-glacial benthic palaeoceanographic reconstructions by opening up vast areas of previously disregarded, low-SAR deep-sea archives to research, which will lead to an improved understanding of the global interaction between oceans and climate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据