4.5 Article

CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy

期刊

RADIATION ONCOLOGY
卷 12, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13014-017-0892-y

关键词

Stereotactic body radiotherapy (SBRT); Computed tomography; Survival; Radiomics; Semantics; Image features

资金

  1. National Cancer Institute [U01 CA143062, P50 CA119997]
  2. Florida Biomedical Research Programs, King Team Science [2KT01]
  3. Biostatistics Core shared resources at the H. Lee Moffitt Cancer Center & Research Institute
  4. NCI designated Comprehensive Cancer Center [P30-CA076292]

向作者/读者索取更多资源

Background: Predicting recurrence after stereotactic body radiotherapy (SBRT) in non-small cell lung cancer (NSCLC) patients is problematic, but critical for the decision of following treatment. This study aims to investigate the association of imaging features derived from the first follow-up computed tomography (CT) on lung cancer patient outcomes following SBRT, and identify patients at high risk of recurrence. Methods: Fifty nine biopsy-proven non-small cell lung cancer patients were qualified for this study. The first follow-up CTs were performed about 3 months after SBRT (median time: 91 days). Imaging features included 34 manually scored radiological features (semantics) describing the lesion, lung and thorax and 219 quantitative imaging features (radiomics) extracted automatically after delineation of the lesion. Cox proportional hazard models and Harrel's C-index were used to explore predictors of overall survival (OS), recurrence-free survival (RFS), and loco-regional recurrence-free survival (LR-RFS). Five-fold cross validation was performed on the final prognostic model. Results: The median follow-up time was 42 months. The model for OS contained Eastern Cooperative Oncology Group (ECOG) performance status (HR = 3.13, 95% CI: 1.17-8.41), vascular involvement (HR = 3.21, 95% CI: 1.29-8.03), lymphadenopathy (HR = 3.59, 95% CI: 1.58-8.16) and the 1st principle component of radiomic features (HR = 1.24, 95% CI: 1.02-1.51). The model for RFS contained vascular involvement (HR = 3.06, 95% CI: 1.40-6.70), vessel attachment (HR = 3.46, 95% CI: 1.65-7.25), pleural retraction (HR = 3.24, 95% CI: 1.41-7.42), lymphadenopathy (HR = 6.41, 95% CI: 2.58-15.90) and relative enhancement (HR = 1.40, 95% CI: 1.00-1.96). The model for LR-RFS contained vascular involvement (HR = 4.96, 95% CI: 2.23-11.03), lymphadenopathy (HR = 2.64, 95% CI: 1.19-5.82), circularity (F13, HR = 1.60, 95% CI: 1.10-2.32) and 3D Laws feature (F92, HR = 1.96, 95% CI: 1.35-2.83). Five-fold cross-validated the areas under the receiver operating characteristic curves (AUC) of these three models were all above 0.8. Conclusions: Our analysis reveals disease progression could be prognosticated as early as 3 months after SBRT using CT imaging features, and these features would be helpful in clinical decision-making.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据