4.1 Article

Detection of Red-Meat Adulteration by Deep Spectral-Spatial Features in Hyperspectral Images

期刊

JOURNAL OF IMAGING
卷 4, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/jimaging4050063

关键词

hyperspectral imaging; spectral-spatial features; meat classification; meat processing; adulteration detection; deep learning; 3D CNN

资金

  1. Auckland University of Technology
  2. AgResearch Strategic Science Investment Fund

向作者/读者索取更多资源

This paper provides a comprehensive analysis of the performance of hyperspectral imaging for detecting adulteration in red-meat products. A dataset of line-scanning images of lamb, beef, or pork muscles was collected taking into account the state of the meat (fresh, frozen, thawed, and packing and unpacking the sample with a transparent bag). For simulating the adulteration problem, meat muscles were defined as either a class of lamb or a class of beef or pork. We investigated handcrafted spectral and spatial features by using the support vector machines (SVM) model and self-extraction spectral and spatial features by using a deep convolution neural networks (CNN) model. Results showed that the CNN model achieves the best performance with a 94.4% overall classification accuracy independent of the state of the products. The CNN model provides a high and balanced F-score for all classes at all stages. The resulting CNN model is considered as being simple and fairly invariant to the condition of the meat. This paper shows that hyperspectral imaging systems can be used as powerful tools for rapid, reliable, and non-destructive detection of adulteration in red-meat products. Also, this study confirms that deep-learning approaches such as CNN networks provide robust features for classifying the hyperspectral data of meat products; this opens the door for more research in the area of practical applications (i.e., in meat processing).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据