4.7 Article

Second law of quantum complexity

期刊

PHYSICAL REVIEW D
卷 97, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.97.086015

关键词

-

资金

  1. John Templeton Foundation

向作者/读者索取更多资源

We give arguments for the existence of a thermodynamics of quantum complexity that includes a second law of complexity. To guide us, we derive a correspondence between the computational (circuit) complexity of a quantum system of K qubits, and the positional entropy of a related classical system with 2(K) degrees of freedom. We also argue that the kinetic entropy of the classical system is equivalent to the Kolmogorov complexity of the quantum Hamiltonian. We observe that the expected pattern of growth of the complexity of the quantum system parallels the growth of entropy of the classical system. We argue that the property of having less-than-maximal complexity (uncomplexity) is a resource that can be expended to perform directed quantum computation. Although this paper is not primarily about black holes, we find a surprising interpretation of the uncomplexity resource as the accessible volume of spacetime behind a black hole horizon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据