4.6 Article

Force generation by titin folding

期刊

PROTEIN SCIENCE
卷 26, 期 7, 页码 1380-1390

出版社

WILEY
DOI: 10.1002/pro.3117

关键词

optical tweezers; force clamp; immunoglobulin C2 domain; fibronectin III domain; force-dependent domain folding-unfolding; molten globule; force-field molecular dynamics simulation; Monte Carlo simulation

资金

  1. Hungarian Science Foundation [OTKA PD116558, OTKA K109480]
  2. National Research, Development and Innovation Office [VKSZ_14-1-2015-0052]
  3. European Union [HEALTH-F2-2011-278850]

向作者/读者索取更多资源

Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据