4.7 Article

Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 18, 期 8, 页码 5821-5846

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-18-5821-2018

关键词

-

资金

  1. PRIMAVERA project - European Union [641727]
  2. NASA MEaSUREs program (Jet Propulsion Laboratory) [GG008658]
  3. University of Leeds
  4. NERC ACSIS program via NCAS

向作者/读者索取更多资源

Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosolcloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3Wm(-2) in-cyclone enhancement in upwelling shortwave when scaled by annualmean insolation. Based on a regression model to observed cyclone properties, roughly 60% of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据