4.7 Article

The lower rather than higher density charge carrier determines the NH3-sensing nature and sensitivity of ambipolar organic semiconductors

期刊

MATERIALS CHEMISTRY FRONTIERS
卷 2, 期 5, 页码 1009-1016

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7qm00607a

关键词

-

资金

  1. National Key Basic Research Program of China [2013CB933402]
  2. National Natural Science Foundation of China [21771192, 21371073, 21301017, 21631003, 21671017]
  3. Natural Science Foundation of Shandong Province [ZR2017ZB0315]
  4. Taishan Scholar Foundation [ts201511019]
  5. Research Foundation from China University of Petroleum (East China) [Y1510051]

向作者/读者索取更多资源

Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (n(e) and n(h)) of 3.6 x 10(15) and 3.6 x 10(18) cm(-3) for ambipolar 1, 9.8 x 10(16) and 6.0 x 10(20) cm(-3) for ambipolar 2, and the original hole density (n(h)) of 2.8 x 10(17) and 2.4 x 10(17) cm(-3) for 3 and 4, respectively. The comparative studies on the sensing behavior of the self-assembled nanostructures of 1-4 revealed that, towards reducing gas NH3, the ambipolar 1 and 2 show an n-type sensing behavior, with the response nature determined by the lower n(e) rather than higher n(h). Meanwhile, the NH3 sensor from 1 with much lower n(e) than 2 displays higher sensitivity. Nevertheless, also towards NH3, 3 and 4 exhibit a p-type response, with the lower carrier density device 4 showing higher sensitivity. Consequently, the originally lower density carrier (hole vs. electron) with a faster charge transporting speed in the ambipolar semiconducting layer determines not only the gas sensing response nature but also the sensitivity. This is also true for the p-type organic semiconductor in terms of the gas sensing sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据