4.8 Article

Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1701562114

关键词

iron; electrocatalytic water splitting; ferrous metaphosphate; oxygen evolution reaction; commercial utilization

资金

  1. US Defense Threat Reduction Agency [FA7000-13-1-0001]
  2. US Department of Energy [DE-SC0010831]
  3. US Air Force Office of Scientific Research Grant [FA9550-15-1-0236]
  4. T. L. L. Temple Foundation
  5. John J. and Rebecca Moores Endowment
  6. State of Texas through the Texas Center for Superconductivity at the University of Houston

向作者/读者索取更多资源

Commercial hydrogen production by electrocatalytic water splitting will benefit from the realization of more efficient and less expensive catalysts compared with noble metal catalysts, especially for the oxygen evolution reaction, which requires a current density of 500 mA/cm(2) at an overpotential below 300 mV with long-term stability. Here we report a robust oxygen-evolving electrocatalyst consisting of ferrous metaphosphate on self-supported conductive nickel foam that is commercially available in large scale. We find that this catalyst, which may be associated with the in situ generated nickel-iron oxide/hydroxide and iron oxyhydroxide catalysts at the surface, yields current densities of 10 mA/cm(2) at an overpotential of 177 mV, 500 mA/cm(2) at only 265 mV, and 1,705 mA/cm(2) at 300 mV, with high durability in alkaline electrolyte of 1 M KOH even after 10,000 cycles, representing activity enhancement by a factor of 49 in boosting water oxidation at 300 mV relative to the state-of-the-art IrO2 catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据