4.8 Article

Direct observation of structure and dynamics during phase separation of an elastomeric protein

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1701877114

关键词

phase separation; elastin; NMR; protein structure; dynamics

资金

  1. Heart and Stroke Foundation of Ontario
  2. Canadian Institutes of Health Research operating grant
  3. Canadian Consortium on Neurodegeneration in Ageing

向作者/读者索取更多资源

Despite its growing importance in biology and in biomaterials development, liquid-liquid phase separation of proteins remains poorly understood. In particular, the molecular mechanisms underlying simple coacervation of proteins, such as the extracellular matrix protein elastin, have not been reported. Coacervation of the elastin monomer, tropoelastin, in response to heat and salt is a critical step in the assembly of elastic fibers in vivo, preceding chemical cross-linking. Elastin-like polypeptides (ELPs) derived from the tropoelastin sequence have been shown to undergo a similar phase separation, allowing formation of biomaterials that closely mimic the material properties of native elastin. We have used NMR spectroscopy to obtain site-specific structure and dynamics of a self-assembling elastin-like polypeptide along its entire self-assembly pathway, from monomer through coacervation and into a cross-linked elastic material. Our data reveal that elastin-like hydrophobic domains are composed of transient beta-turns in a highly dynamic and disordered chain, and that this disorder is retained both after phase separation and in elastic materials. Cross-linking domains are also highly disordered in monomeric and coacervated ELP3 and form stable helices only after chemical cross-linking. Detailed structural analysis combined with dynamic measurements from NMR relaxation and diffusion data provides direct evidence for an entropy-driven mechanism of simple coacervation of a protein in which transient and nonspecific intermolecular hydrophobic contacts are formed by disordered chains, whereas bulk water and salt are excluded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据