4.8 Article

Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1607350114

关键词

fibrin; microgels; colloidal assemblies; porosity; cell migration

资金

  1. Department of Defense [W81XWH-15-1-0485]
  2. National Institutes of Health [R01HL130918]
  3. National Science Foundation [DMR-1609841]
  4. American Heart Association
  5. National Science Foundation (NSF) [NSF DGE 0965945]
  6. Parker H. Petit Institute for Bioengineering and Bioscience
  7. Georgia Tech/Children's Healthcare of Atlanta (GT/CHOA) Center for Pediatric Nanomedicine
  8. Direct For Mathematical & Physical Scien
  9. Division Of Materials Research [1609841] Funding Source: National Science Foundation

向作者/读者索取更多资源

In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (phi), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据