4.6 Article

Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f

期刊

ASTRONOMICAL JOURNAL
卷 155, 期 6, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-3881/aabfd1

关键词

methods: analytical; methods: numerical; planets and satellites: dynamical evolution and stability; planets and satellites: terrestrial planets

资金

  1. Natural Science and Engineering Research Council (NSERC) of Canada
  2. Harvard William F. Milton Award

向作者/读者索取更多资源

Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet's spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N-body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the planetary properties and system architecture in the lower-obliquity regimes (less than or similar to 40 degrees). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below similar to 40 degrees, whereas the high-obliquity regions (60 degrees-90 degrees) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g., mutual inclinations similar to 3 degrees) could stir peak-to-peak obliquity variations up to similar to 20 degrees. Undetected planetary companions and/or the existence of a satellite could also destabilize the low-obliquity regions. In all cases, the high-obliquity region allows for moderate variations, and all obliquities corresponding to retrograde motion (i.e., >90 degrees) are stable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据