4.7 Article

Epidemic spreading in localized environments with recurrent mobility patterns

期刊

PHYSICAL REVIEW E
卷 97, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.97.052302

关键词

-

资金

  1. James S. McDonnell Foundation Postdoctoral Fellowship [220020457]
  2. Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health [R01HD075712]
  3. James S. McDonnell Foundation [220020315]

向作者/读者索取更多资源

The spreading of epidemics is very much determined by the structure of the contact network, which may be impacted by the mobility dynamics of the individuals themselves. In confined scenarios where a small, closed population spends most of its time in localized environments and has easily identifiable mobility patterns-such as workplaces, university campuses, or schools-it is of critical importance to identify the factors controlling the rate of disease spread. Here, we present a discrete-time, metapopulation-based model to describe the transmission of susceptible-infected-susceptible-like diseases that take place in confined scenarios where the mobilities of the individuals are not random but, rather, follow clear recurrent travel patterns. This model allows analytical determination of the onset of epidemics, as well as the ability to discern which contact structures are most suited to prevent the infection to spread. It thereby determines whether common prevention mechanisms, as isolation, are worth implementing in such a scenario and their expected impact.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据