4.7 Article

Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

期刊

PHYSICAL REVIEW D
卷 97, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.97.106003

关键词

-

资金

  1. U.S. DOE [DE-FAG-88FR40388]

向作者/读者索取更多资源

We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 + 1 dimensions. We have found that, close to the ground state E approximate to 0, discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N, which we compute analytically and numerically, grows exponentially with N for E approximate to 0. However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E approximate to 0, the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O(N) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E approximate to 0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N. Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g(t), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1/t(2) for times shorter but comparable to the Thouless time with g(0) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据