4.4 Article

Probabilistic analysis method of turbine blisk with multi-failure modes by two-way fluid-thermal-solid coupling

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954406217723673

关键词

Turbine blisk; multi-failure modes; probabilistic analysis; two-way fluid-thermal-solid coupling; multi-extremum response surface method

向作者/读者索取更多资源

This study develops multi-extremum response surface method (MERSM) for the probabilistic analysis of aeroengine turbine blisk with the coexistence of many failure modes by considering two-way fluid-thermal-solid coupling under complex working condition. The mathematical model of MERSM was established with respect to the random input variables of inlet temperature, inlet velocity, density of material, and rotor speed, and the output responses of the maximum values of deformation, stress, and strain. The comprehensive probabilistic analysis of turbine blisk was completed based on MERSM. The results demonstrate that the comprehensive reliability degree of turbine blisk is 0.9944 when the allowable deformation, stress, and strain are 2.6x10(-3)m, 1.26x10(9)Pa, and 6.75x10(-3)m/m, respectively. The main factors influencing the comprehensive reliability degree of turbine blisk are rotor speed and gas temperature. The secondary factors are inlet velocity and density of material. As revealed from the comparison of methods, MERSM improves the computational speed and efficiency with the guarantee of accuracy. The efforts of this paper provide a promising approach for the nonlinear transient reliability analysis of complex structures with multi-failure modes and two-way fluid-thermal-solid coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据