4.6 Review

Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 36, 期 1, 页码 29-50

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2016.08.078

关键词

Flame aerosol synthesis; Functional nanomaterials and devices; Coagulation and surface growth; Aggregates and agglomerates; Fractal dimension and mass-mobility exponent

资金

  1. Swiss National Science Foundation [200021_149144]
  2. ETH Zurich [ETH-08 14-2]
  3. Swiss National Science Foundation (SNF) [200021_149144] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Combustion is essential to the manufacture of carbon black, fumed oxides, optical fibers and, recently, new high-value products like carbon nanotubes, nanosilver and biomagnetic nanofluids that are driven to market predominantly by start-ups. This technology is attractive for material synthesis for its proven scalability as it does not involve the tedious steps of wet chemistry and can readily form stably metastable compositions and high purity products. Recent advances in aerosol and combustion sciences reveal that coagulation and sintering and/or surface growth control product particle size and morphology through the high temperature particle residence time, self-preserving size distribution and power laws for fractal-like particles. This motivates synthesis of an array of unique particle compositions and morphologies primarily by spray combustion leading to new catalysts, gas sensors, bio-materials and, most recently, to hand-held devices such as breath analysis sensors for monitoring chronic illnesses. In particular, multi-scale process design integrating mesoscale and molecular dynamics facilitates understanding of combustion product development. The latter also contributes to understanding of aggregation and surface growth of nascent soot, a bona fide nanostructured material! So here nascent soot dynamics, after nucleation or inception, are investigated through accounting of soot agglomeration and surface growth by acetylene pyrolysis. Neglecting the fractal-like nature of soot underestimates its mobility diameter and polydispersity up to 40%. The evolution of nascent soot structure from spheres to aggregates is quantified by the mass fractal dimension and massmobility exponent, in excellent agreement with microscopic and mass-mobility measurements in a standard burner-stabilized stagnation ethylene flame. Surface growth chemically bonds the constituent primary particles of these aggregates, while the effect of soot volume fraction on soot morphology is elucidated. Based on aggregate projected area, a scaling law is derived for determining the primary particle size of nascent soot aggregates from mass-mobility measurements rather than tedious image counting. (C) 2016 by The Combustion Institute. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据