4.7 Review

Mechanisms of oxidative stress in plants: From classical chemistry to cell biology

期刊

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
卷 109, 期 -, 页码 212-228

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2014.06.021

关键词

Plasma membrane; Reactive oxygen species; Oxidative stress; Ion channels; Plant cell signaling; Programed cell death

向作者/读者索取更多资源

Oxidative stress is a complex chemical and physiological phenomenon that accompanies virtually all biotic and abiotic stresses in higher plants and develops as a result of overproduction and accumulation of reactive oxygen species (ROS). This review revises primary mechanisms underlying plant oxidative stress at the cellular level. Recent data have clarified the 'origins' of oxidative stress in plants, and show that apart from classical chloroplast, mitochondrial and peroxisome sources, ROS are synthesized by NADPH oxidases and peroxidases. ROS damage all major plant cell bio-polymers, resulting in their dysfunction. They activate plasma membrane Ca2+-permeable and K+-permeable cation channels as well as annexins, catalyzing Ca2+ signaling events, K+ leakage and triggering programed cell death. Downstream ROS-Ca2+-regulated signaling cascades probably include regulatory systems with one (ion channels and transcription factors), two (Ca2+-activated NADPH oxidases and calmodulin) or multiple components (Ca2+-dependent protein kinases and mitogen-activated protein kinases). Intracellular and extracellular antioxidants form sophisticated networks, protecting against oxidation and 'shaping' stress signaling. Research into plant oxidative stress has shown great potential for developing stress-tolerant crops. This can be achieved through the use of directed evolution techniques to prevent protein oxidation, bioengineering of antioxidant activities as well as modification of ROS sensing mechanisms. (C) 2014 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据