4.7 Article

Production of fine calcium powders by centrifugal atomization with rotating quench bath

期刊

POWDER TECHNOLOGY
卷 308, 期 -, 页码 84-93

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2016.12.011

关键词

Calcium; Centrifugal atomization; Powder; Stability; Particle size; Particle morphology

资金

  1. U.S. Department of Energy Office of Electricity [DE-AC02-07CH11358]
  2. Summit Technology Group LLC
  3. ISU's Electric Power Research Center
  4. Iowa State University Research Foundation

向作者/读者索取更多资源

Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than similar to 250 mu m) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Ca composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol.% Ca powder particles smaller than 250 mu m. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据