4.3 Article

Pentacoordinated Chloro-Iron(III) Complexes with Unsymmetrically Substituted N2O2 Quadridentate Schiff-Base Ligands: Syntheses, Structures, Magnetic and Redox Properties

期刊

INORGANICS
卷 6, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/inorganics6010005

关键词

iron; unsymmetrically substituted tetradentate Schiff base; five-coordinate complex; square-pyramidal geometry; magnetism; crystal structure

资金

  1. Fondo Nacional de Desarrollo Cientifico y Tecnologico [FONDECYT (Chile)] [1130105]
  2. Vicerrectoria de Investigacion y Estudios Avanzados, Pontificia Universidad Catolica de Valparaiso, Chile
  3. CNRS
  4. Universite de Rennes 1
  5. CONICYT (Chile)

向作者/读者索取更多资源

Since their development in the 1930s, Schiff-base complexes have played an important role in the field of coordination chemistry. Here, we report the synthetic, spectral, structural, magnetic and electrochemical studies of two new pentacoordinated neutral chloro-iron(III) complexes (3,5) supported by dianionic [N2O2](2-) tetradentate Schiff-base ligands unsymmetrically substituted by either a pair of acceptor (F and NO2) or donor (ferrocenyl and OCH3) groups. The electron-withdrawing Schiff-base proligand 2 and the complexes 3 and 5 were prepared in good yields (79-86%). Complex 3 was readily obtained upon reaction of 2 with anhydrous iron chloride under basic conditions, while the bimetallic derivative 5 was synthesized by condensation of the free amino group of the ferrocenyl-containing O,N,N-tridentate half-unit 4 with 5-methoxysalicylaldehyde in the presence of FeCl3. The three new compounds were characterized by elemental analysis, FT-IR, UV-Vis, mass spectrometry and in the case of 2 by multinuclear NMR spectroscopy. The crystal structures of 3 and 5 revealed that in the two five-coordinate monomers, the iron atom showed distorted square-pyramidal geometry, with the N and O atoms of the Schiff-base ligand occupying the basal sites and the chlorine atom at the apex of the pyramid. Magnetic measurements showed a high-spin configuration (S = 5/2) for the Fe(III) ion in 3 and 5. Reduction associated with the Fe(III)/Fe(II) redox couple occurred at -0.464 and -0.764 V vs. Ag/Ag+, and oxidation taking place at the Schiff-base ligand was observed at 1.300 and 0.942 V vs. Ag/Ag+ for 3 and 5, respectively. A high-electronic delocalization of the Schiff-base ligand substituted by fluoro and nitro groups stabilizes the Fe(II) oxidation state and shifts the redox potential anodically.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据