4.7 Article

Experimental and modeling analysis of mechanical-electrical behaviors of polypropylene composites filled with graphite and MWCNT fillers

期刊

POLYMER TESTING
卷 63, 期 -, 页码 467-474

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymertesting.2017.09.009

关键词

Tensile strength; Flexural strength; Electrical conductivity; Carbon fillers; Multi-walled carbon nanotube; Prediction models

向作者/读者索取更多资源

The incorporation of carbon fillers can improve the thermal and electrical conductivities of polymer composites but will also have a significant effect on the flexural and tensile behavior. In this paper, two types of carbon fillers were added to polypropylene - carbon nanotubes and synthetic graphite. The influences of these filler materials on the tensile, flexural and fracture toughness characteristics were measured and the electrical conductivity of composites was also investigated. It was observed that the fillers lead to a remarkable increase in the flexural and tensile modulus of polypropylene composites. The maximum flexural and tensile strengths slightly increased with the addition of graphite, however, they were significantly increased in the case of carbon nanotubes because MWCNTs possess exceptional stiffness and strength and their length to diameter ratio is extremely high when compared with graphite. Electrical conductivity of polypropylene composites was evaluated. Noteworthy, composites based on synthetic graphite show a percolation process at one order of magnitude concentration higher than MWCNT filled polypropylene. Fracture toughness results open a wide range of applications for PP-MWCNT composites. Several prediction models were inspected in this research and it was concluded that inverse rule of mixtures model showed the most accurate predictions of the tensile modulus for composites made of polypropylene. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据