4.0 Review

Tough, self-recovery and self-healing polyampholyte hydrogels

期刊

POLYMER SCIENCE SERIES C
卷 59, 期 1, 页码 11-17

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S1811238217010118

关键词

-

向作者/读者索取更多资源

This article reviews the recently developed tough, self-recovery, and self-healing polyampholyte hydrogels. Polyampholyte hydrogels are synthesized using one-step radical copolymerization of cationic and anionic monomers with equal charges at high monomer concentration. The random copolymerization process makes the ionic monomers randomly distributing along the backbones, resulting in the formation of ionic bonds with a wide strength distribution via inter and intra chain complexation in the polymer network, weak bond and strong bonds. The strong bonds serve as permanent cross-linking, integrating the hydrogels to impart the elastic behavior, while the weak bonds can break upon the loading, dissipating energy to give the toughness, and re-form again after unloading to enable the self-recovery behavior. Accordingly, polyampholyte hydrogels have condensed polymers in water (ca 40-50 wt %). They are strongly viscoelastic and have a high toughness (fracture energy of 4000 J/m(2)), a wide range of tuning modulus (0.01 to 8 MPa), 100% self-recovery, and a high self-healing efficiency after cutting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据