4.8 Article

Development of a magnetic microrobot for carrying and delivering targeted cells

期刊

SCIENCE ROBOTICS
卷 3, 期 19, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scirobotics.aat8829

关键词

-

类别

资金

  1. Research Grant Council of Hong Kong Special Administrative Region, China [CityU 11267916, CityU 11210315]
  2. Shenzhen Science and Technology Project, China [R-IND13301]

向作者/读者索取更多资源

The precise delivery of targeted cells through magnetic field-driven microrobots/carriers is a promising technique for targeted therapy and tissue regeneration. This paper presents a microrobot designed with a burr-like porous spherical structure for carrying and delivering targeted cells in vivo under a magnetic gradient field-driven mechanism. The robot was fabricated by using three-dimensional laser lithography and coated with Ni for magnetic actuation and Ti for biocompatibility. Numerical and experimental studies demonstrated that the proposed microrobot design could enhance magnetic driving capability, promote cell-carrying capacity, and benefit cell viability. Microrobots loaded with cells could be automatically controlled to reach a desired site by using a self-constructed electromagnetic coil system, as verified by in vivo transport of cell-cultured microrobots in zebrafish embryos. The carried cells could be spontaneously released from the microrobot to the surrounding tissues; in vitro experiments showed that cells from the microrobot were directly released onto the desired site or were able to pass through the blood vessel-like microchannel to arrive at the delivery area. Further in vivo cell-releasing tests were performed on nude mice, followed by histological study. This research provides a microrobotic device platform for regenerative medicine and cell-based therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据