4.7 Article

Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms

期刊

POLYMER
卷 119, 期 -, 页码 28-39

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2017.05.016

关键词

Microcellular foams; Nucleation theory; Elastic strain energy

资金

  1. National Natural Science Foundation of China (NSFC) [51405267]
  2. Shandong Provincial Natural Science Foundation [ZR2014EEQ017]
  3. Shandong University
  4. Consortium of Cellular and Micro-Cellular Plastics (CCMCP)
  5. China Postdoctoral Science Foundation
  6. International Postdoctoral Exchange Fellowship Program of China

向作者/读者索取更多资源

Cell nucleation plays a pivotal role in polymer foaming because it significantly affects the foam's cellular structure and properties. One of the major drawbacks of classical cell-nucleation theory is that it ignores elastic strain energy's effect on cell nucleation. Hereby, we conducted an experimental study to clarify elastic strain energy's role in cell nucleation. We found that not only gas super-saturation but also elastic strain energy can offer a driving force for cell nucleation. Meanwhile, not only interfacial energy barrier but also material's elastic energy barrier can act as a cell nucleation resistance. The uniaxial stretching assisted foaming process and the uniaxial compressing-assisted foaming process were explored and conducted to investigate the stretching strain energy's effect and the compressive strain energy's effect on cell nucleation, respectively. We demonstrated that both stretching and compressing can promote cell nucleation, but stretching is much more effective than compressing. The larger the elastic strain energy, the higher the cell nucleation density and the more uniform the cellular morphology. Whereas no foam structure was developed in the regular foaming process, sub-microcellular thermoplastic polyurethane (TPU) microfilms were achieved by applying the uniaxial or biaxial stretching-assisted foaming process. The fine sub-microcellular TPU microfilm with an average cell size of 382.6 nm has a void fraction of 0.64, which is to the best of our knowledge the largest void fraction of the porous polymer microfilm. Thus, we reported a promising and versatile way to control cell nucleation and to develop new techniques by which to produce novel multi-functional porous polymers. (c) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据