4.6 Article

MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition

期刊

PLOS ONE
卷 12, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0179529

关键词

-

资金

  1. Ministry of Science and Technology (MOST) of Taiwan [103-2221-E-155-020-MY3, MOST 104-2221-E-155-036-MY2]

向作者/读者索取更多资源

S-palmitoylation, the covalent attachment of 16-carbon palmitic acids to a cysteine residue via a thioester linkage, is an important reversible lipid modification that plays a regulatory role in a variety of physiological and biological processes. As the number of experimentally identified S-palmitoylated peptides increases, it is imperative to investigate substrate motifs to facilitate the study of protein S-palmitoylation. Based on 710 non homologous S-palmitoylation sites obtained from published databases and the literature, we carried out a bioinformatics investigation of S-palmitoylation sites based on amino acid composition. Two Sample Logo indicates that positively charged and polar amino acids surrounding S-palmitoylated sites may be associated with the substrate site specificity of protein S-palmitoylation. Additionally, maximal dependence decomposition (MDD) was applied to explore the motif signatures of S-palmitoylation sites by categorizing a large-scale dataset into subgroups with statistically significant conservation of amino acids. Single features such as amino acid composition (AAC), amino acid pair composition (AAPC), position specific scoring matrix (PSSM), position weight matrix (PWM), amino acid substitution matrix (BLOSUM62), and accessible surface area (ASA) were considered, along with the effectiveness of incorporating MDD-identified substrate motifs into a two-layered prediction model. Evaluation by five-fold cross-validation showed that a hybrid of AAC and PSSM performs best at discriminating between S-palmitoylation and non-S-palmitoylation sites, according to the support vector machine (SVM). The two-layered SVM model integrating MDD-identified substrate motifs performed well, with a sensitivity of 0.79, specificity of 0.80, accuracy of 0.80, and Matthews Correlation Coefficient (MCC) value of 0.45. Using an independent testing dataset (613 S-palmitoylated and 5412 non-S-palmitoylated sites) obtained from the literature, we demonstrated that the two-layered SVM model could outperform other prediction tools, yielding a balanced sensitivity and specificity of 0.690 and 0.694, respectively. This two-layered SVM model has been implemented as a web-based system (MDD-Palm), which is now freely available at

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据