4.6 Article

Low concentration DNA extraction and recovery using a silica solid phase

期刊

PLOS ONE
卷 12, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0176848

关键词

-

资金

  1. National Institute of Health: National Institute of Biomedical Imaging and Bioengineering [5U54EB015403]
  2. National Institute of Health: National of Allergy and Infectious Disease [1R56AI113927]
  3. National Institutes of Health NIBIB [5U54EB015403]
  4. NIAID grant [1R56AI113927]

向作者/读者索取更多资源

DNA extraction from clinical samples is commonly achieved with a silica solid phase extraction column in the presence of a chaotrope. Versions of these protocols have been adapted for point of care (POC) diagnostic devices in miniaturized platforms, but commercial kits require a high amount of input DNA. Thus, when the input clinical sample contains less than 1 mu g of total DNA, the target-specific DNA recovery from most of these protocols is low without supplementing the sample with exogenous carrier DNA. In fact, many clinical samples used in the development of POC diagnostics often exhibit target DNA concentrations as low as 3 ng/mL. With the broader goal of improving the yield and efficiency of nucleic acid-based POC devices for dilute samples, we investigated both DNA adsorption and recovery from silica particles by using 1 pg- 1 mu g of DNA with a set of adsorption and elution buffers ranging in pH and chaotropic presence. In terms of adsorption, we found that low pH and the presence of chaotropic guanidinium thiocyanate (GuSCN) enhanced DNA-silica adsorption. When eluting with a standard low-salt, high-pH buffer, > 70% of DNA was unrecoverable, except when DNA was initially adsorbed with 5 M GuSCN at pH 5.2. Unrecovered DNA was either not initially adsorbed or irreversibly bound on the silica surface. Recovery was improved when eluting with 95 degrees C formamide and 1 M NaOH, which suggested that DNA-silica- chaotrope interactions are dominated by hydrophobic interactions and hydrogen bonding. While heated formamide and NaOH are non-ideal elution buffers for practical POC devices, the salient results are important for engineering a set of optimized reagents that could maximize nucleic acid recovery from a microfluidic DNA-silica-chaotrope system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据