4.6 Article

Quantum simulation of lattice gauge theories using Wilson fermions

期刊

QUANTUM SCIENCE AND TECHNOLOGY
卷 3, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2058-9565/aac33b

关键词

quantum simulation; lattice gauge theory; Wilson fermions; ultracold atoms; Bose-Fermi mixture; real-time dynamics; Schwinger mechanism

资金

  1. DFG Collaborative Research Center [SFB 1225]
  2. ERC Advanced Grant 'AtomicGaugeSimulator' [339220]
  3. ERC Advanced Grant 'EntangleGen' [694561]
  4. DFG [377616843]
  5. Excellence Initiative of the German federal government and the state governments-funding line Institutional Strategy (Zukunftskonzept): DFG project [ZUK 49/U]
  6. European Research Council (ERC) [339220] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Quantum simulators have the exciting prospect of giving access to real-time dynamics of lattice gauge theories, in particular in regimes that are difficult to compute on classical computers. Future progress towards scalable quantum simulation of lattice gauge theories, however, hinges crucially on the efficient use of experimental resources. As we argue in this work, due to the fundamental non-uniqueness of discretizing the relativistic Dirac Hamiltonian, the lattice representation of gauge theories allows for an optimization that up to now has been left unexplored. We exemplify our discussion with lattice quantum electrodynamics in two-dimensional space-time, where we show that the formulation through Wilson fermions provides several advantages over the previously considered staggered fermions. Notably, it enables a strongly simplified optical-lattice setup and it reduces the number of degrees of freedom required to simulate dynamical gauge fields. Exploiting the optimal representation, we propose an experiment based on a mixture of ultracold atoms trapped in a tilted optical lattice. Using numerical benchmark simulations, we demonstrate that a state-of-the-art quantum simulator may access the Schwinger mechanism and map out its non-perturbative onset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据