4.0 Article

DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning

期刊

JOURNAL OF MEDICAL IMAGING
卷 5, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JMI.5.3.036501

关键词

medical image dataset; lesion detection; convolutional neural network; deep learning; picture archiving and communication system; bookmark

资金

  1. Intramural Research Program of the National Institutes of Health, Clinical Center

向作者/读者索取更多资源

Extracting, harvesting, and building large-scale annotated radiological image datasets is a greatly important yet challenging problem. Meanwhile, vast amounts of clinical annotations have been collected and stored in hospitals' picture archiving and communication systems (PACS). These types of annotations, also known as bookmarks in PACS, are usually marked by radiologists during their daily workflow to highlight significant image findings that may serve as reference for later studies. We propose to mine and harvest these abundant retrospective medical data to build a large-scale lesion image dataset. Our process is scalable and requires minimum manual annotation effort. We mine bookmarks in our institute to develop DeepLesion, a dataset with 32,735 lesions in 32,120 CT slices from 10,594 studies of 4,427 unique patients. There are a variety of lesion types in this dataset, such as lung nodules, liver tumors, enlarged lymph nodes, and so on. It has the potential to be used in various medical image applications. Using DeepLesion, we train a universal lesion detector that can find all types of lesions with one unified framework. In this challenging task, the proposed lesion detector achieves a sensitivity of 81.1% with five false positives per image. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据