4.6 Article

Dramatic Improvement of the Mechanical Strength of Silane-Modified Hydroxyapatite-Gelatin Composites via Processing with Cosolvent

期刊

ACS OMEGA
卷 3, 期 3, 页码 3592-3598

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b01924

关键词

-

资金

  1. NIH/NIDCR [R01DE022816]

向作者/读者索取更多资源

Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite-gelatin with a silane crosslinker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite-gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite-gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite-gelatin composite is a promising material for BTE application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据